Информационные технологииStfw.Ru 🔍
🕛

Биты и кубиты. Квантовый компьютер - "фантастическое будущее, которое делает обычные компьютеры топором неандертальца". Так ли это?

Сергей Медведев: Вопрос, который мучает меня давно: квантовый компьютер. Доводится очень много о нем слышать, и чем больше я слышу и читаю, тем меньше ..., Сергей Медведев: Вопрос,
Сергей Медведев: Вопрос, который мучает меня давно: квантовый компьютер. Доводится очень много о нем слышать, и чем больше я слышу и читаю, тем меньше понимаю, как он работает и для чего он нужен. Тем не менее, пишут, что это какое-то фантастическое будущее, которое делает наши обычные компьютеры просто топором неандертальца. Для того чтобы понять, так ли это, мы позвали специалиста по квантовым компьютерам, по квантовой механике – Валерия Рязанова из Института физики твердого тела Российской академии наук.Расскажите про квантовый компьютер. Как я понял, существует предположение американского физика Фейнмана о том, что на обычном компьютере нельзя полностью рассчитать физическую систему, а на квантовом можно.Валерий Рязанов: Есть очень сложные системы, которые невозможно рассчитать.Сергей Медведев: Только очень сложные или любую систему невозможно?Валерий Рязанов: Тут все зависит от числа. Если приводить пример цивильных, общезначимых задач… Например, задача оптимизации, задача путешественника: человеку нужно проехать N городов и выбрать оптимальный путь. Надо увеличить число городов, задача возрастает экспоненциальным образом с увеличением числа N. Квантовый алгоритм позволяет такую задачу свести к степенной зависимости, и можно гораздо быстрее решить ее с помощью квантовых алгоритмов. Вторая такая задача тоже известна – это разложение на простые множители.Сергей Медведев: То есть если взять какое-то число, компьютер может перемножать числа, но из каких множителей было сделано это число – это сложнее.Валерий Рязанов: Лет пять назад, когда все это начиналось, считалось большим достижением то, что квантовая система разложила число 15 на 5 и 3. На самом деле это простое число, два множителя, а когда число этих множителей увеличивается, опять-таки, поиск этих множителей существенно удлиняется. На самом деле для кодирования нужно расшифровывать числа, которые содержат очень много сомножителей. Там это дело возрастает просто факториально, то есть почти экспоненциально, и «затыкается», где-то дойдя до 13-15 сомножителей.Сергей Медведев: И для этого нужны квантовые компьютеры, здесь лучше подходит квантовый компьютер, чем обычный?Валерий Рязанов: Нельзя сказать, что любые задачи решаются с помощью квантового компьютера. Две задачи я назвал, и есть еще ряд задач. Моделирование квантовых систем, создание, расшифровка сложных молекул, создание, проектирование новых материалов – это все очень емкие задачи, непосильные для классического компьютера.Сергей Медведев: Прогноз погоды – тут тоже много переменных. Или имитация ядерного взрыва.Валерий Рязанов: Последнее, это, наверное – ближе. Один из проектов, в котором мы участвуем, ведется при поддержке Минобрнауки, Росатома и Фонда перспективных исследований. Росатом среди немногих организаций выразил заинтересованность, но, главным образом, в моделировании материалов.Сергей Медведев: Чем отличается квантовый компьютер от обычного компьютера? Это принципиальная разница?Валерий Рязанов: Разница принципиальная. Все, что сейчас сделано с обычным компьютером, – это в каком-то смысле примитивно, потому что это нули и единицы.Сергей Медведев: Бит информации, да или нет…Валерий Рязанов: Из этого обычного бита нужно потом построить алгоритм, который делает все, что угодно, возводит в степень, берет интеграл и так далее. У вас одна и та же машина, но, задавая алгоритм, вы решаете множество задач. А что является битом на языке квантовых процессов? Такой естественный, типичный квантовый процесс наблюдается, например, при исследовании ядерного магнитного резонанса.Вообще, это можно так себе представить: если из центра сферы провести радиус, вектор единичного размера, то бинарная классическая логика – это вектор вверх или вектор вниз, единица или ноль, а в случае квантовой логики – это вектор, который бежит по всей поверхности единичной сферы, и тогда появляются два угла, две координаты. То есть, зная об эволюции этого вектора, вы знаете сразу две координаты. Уже для такого единичного квантового бита вы имеете естественный параллелизм.Дело в том, что сейчас большие задачи решаются также на обычных (классических), но многоядерных процессорах, они параллельно ведут несколько вычислительных процессов, где-то ответы сводятся вместе, и продолжается дальнейшее решение задачи. А в квантовом случае этот параллелизм естественный, поскольку у вас сразу две координаты этого одного единичного вектора. На языке двух классических состояний – состояние ноль и состояние единицы – мы здесь имеем координату меньше единицы одну и координату меньше единицы другую, то есть имеем с какой-то амплитудой и то, и другое классическое решение.Сергей Медведев: То есть, грубо говоря, это не бит, а то, что у вас называется «кубит», то есть не один или ноль, а может быть один, и может быть ноль. Это и есть суперпозиция?Валерий Рязанов: Как раз те веса единицы и нуля, которые есть в этом решении, содержатся в этом векторе, их квадрат – это вероятность. Если вы будете мерить классическим измерением, то пронаблюдаете ноль или единицу с вероятностью, которая равна квадрату этой амплитуды.Сергей Медведев: То есть это уже принципиально другие вычисления, которые оперируют не бинарной, а вероятностной логикой?Валерий Рязанов: Прежде всего, сам бит другой, и управление этим вектором абсолютно отличается от управления нулями и единицами, которое есть в обычном бинарном цифровом компьютере.Сергей Медведев: Внутри он сделан из тех же материалов, там такие же полупроводники, просто они иначе соединены?Валерий Рязанов: Нет. Ясно, что любая цифровая логика содержит не один бит, не один переключатель «ноль-единица», а набор переключателей, которые как-то выстроены, как-то передают эти нули и единицы друг другу, машина считывает и так далее. Здесь тоже происходит ускорение с увеличением числа битов, просто оно линейное. Увеличение числа обычных битов увеличивает возможности логики, возможность совершения логических операций. Существует минимальный необходимый набор логических операций для возможности выполнения любых классических алгоритмов.В квантовом случае тоже есть, например, однокубитные операции, в которых участвует только один кубит, но для полного набора обязательно нужен один двухкубитный гейт, то есть логический вентиль, и все эти гейты как-то соединяются в квантовом процессоре. Суть квантового ускорения вычислений заключается в том, что если у нас один квантовый бит, то мы одновременно следим за двумя координатами, а если у нас N битов, то мы следим одновременно за два в степени N (то есть 2N) координатами. И наш вектор уже оказывается в многомерном пространстве, которое N-мерно, и там уже этот вектор имеет два в степени N координат и одновременно за всеми ними следит.Весь вопрос в том, как построить эту штуку из отдельных битов. Отдельный бит на языке атомной физики, квантовой механики – это просто два уровня энергии, основной и первый возбужденный. На самом деле эти уровни соответствуют «чистым состояниям», тому же нулю и единице, можно «сесть» туда или сюда, инициализация так и происходит. Но если вы включите микроволновое возбуждение с частотой, которая равна расстоянию между уровнями, то вы можете «ходить» между этими состояниями и переходить из чистых состояний в состояния, которые являются суперпозицией, однако при классическом считывании вы с какой-то вероятностью окажетесь либо не верхнем, либо на нижнем уровне. Это «хождение» между уровнями на самом деле быстро затухает, что определяет время жизни квантового состояния.Время жизни квантового состояния – это очень важная характеристика для квантовых вычислений. На самом деле, можно взять отдельный атом: у него, конечно, время жизни состояний будет гораздо больше, чем в тех системах, о которых мы будем говорить.Сергей Медведев: Квантовое состояние – это какая-то миллисекунда, в которую существует эта вероятность? В следующую миллисекунду она уже будет совершенно другая.Валерий Рязанов: Совершенно верно. Если представить электроны, летящие в твердом теле, в любом металле, то их время жизни равно времени между соударениями с кристаллической решеткой. Когда они отдают энергию при соударении, один электрон «умирает», а электрон, который «родится» после этого соударения, – уже совсем другой электрон со своими состояниями. Этот новый электрон не будет ничего знать о предыдущем. Если бы этот электрон был нашим объектом, с помощью которого мы делаем квантовые вычисления, то мы должны были бы успеть провести квантовые вычисления, пока он не потерял память о своем состоянии. И вот тут возникает дилемма: с одной стороны, можно, конечно, использовать естественную атомную систему с большим временем жизни, но на нее трудно воздействовать, а нам же еще надо ею управлять… И второе: с одним атомом мы ничего не сделаем, нужно несколько атомов, их надо как-то связать. Это пытаются делать в Новосибирске, например.Чем выше уровень энергии атома, тем больше, грубо говоря, размер орбиты, поэтому эти высокоэнергетические атомные состояния хоть как-то взаимодействуют. Таким образом, один из существующих подходов – это взять нейтральные атомы и, создавая высокоэнергетические состояния, связывать атомы между собой и как-то управлять этими атомами. Мы, например, идем по другому пути, используем то, что очень напоминает обычную электронику, но, правда, используем не полупроводники, а сверхпроводники.Сергей Медведев: В любом случае внутри это похоже на обычный компьютер?Валерий Рязанов: То, что пытаются делать с атомами, с ионами в электромагнитных ловушках и так далее, не очень похоже.источник: gdb.rferl.orgВалерий РязановСергей Медведев: Я так понимаю, полупроводник основан на обычной бинарной логике: переключатель, ток либо пошел, либо не пошел, а у вас нужно, чтобы квантовый процесс либо пошел, либо нет. Искали, как я понимаю, физические тела, в которых можно реализовать квантовый процесс, ловить фотон, электрон и так далее.Валерий Рязанов: Сверхпроводник хорош тем, что он позволяет реализовать искусственный атом. Причем у нас это действительно макроскопическая система. Это колечко размером с микрон или даже больше, что для квантовой физики огромный размер, в него еще вставлены туннельные переходы в виде двух пленочек, которые налегают друг на друга, а между ними туннельный оксидный барьер. Вот эти колечки являются нашими искусственными атомами. Там два состояния: это когда ток течет по кольцу либо в одну сторону, либо в другую, и они у нас связаны, то есть одновременно существует и то, и другое.Сергей Медведев: И в ту, и в другую сторону – как свет: либо он волна, либо частица. Как кот Шредингера, он одновременно и мертв, и жив.Скажите, какие задачи вам сейчас удалось решить при помощи квантового компьютера?Валерий Рязанов: То, что сейчас реально существует, называется не квантовым компьютером, а квантовым симулятором. В чем разница между ними? С чего начинался век электронных вычислительных устройств? Если вы помните, после арифмометра «Феликс», который был механическим вычислительным устройством, появились некие ящички, которые возводили в квадрат, возводили в куб, то есть в них была заложена одна аналоговая операция, вы что-то подавали на входе и единственный ответ, единственную функцию получали на выходе.Вот что-то такое сейчас фактически уже сделано, и уже продают коммерческие квантовые машины. Скажем, в Канаде есть фирма, которая продала несколько квантовых «аналоговых» машин, и там уже в них масса кубитов: сначала они сделали двести с чем-то кубитов, потом – пятьсот, сейчас – тысячу с чем-то. Важно то, что, по сути дела, там нет управления всеми отдельными кубитами с тем, чтобы запустить тот или другой алгоритм и с их помощью делать что-то разное: у них есть всего один алгоритм. Грубо говоря, алгоритм квантового отжига, реализуемый в этих машинах, можно представить следующим образом: вы взболтали что-то, потом это село в ямки в какой-то ячеистой структуре, и соответствующее оптимальное решение нашлось само собой. В классическом случае это тоже происходит, но в классическом случае, двигаясь к равновесию, вам придется преодолевать все эти бугры между ямками, когда вы будете «устаканивать» всю эту систему. В квантовом случае это все быстрее, и, кроме того, все происходит немножко по-другому с участием туннелирования.Сергей Медведев: Как я понимаю, квантовый компьютер в чистом виде еще не создан, созданы симуляторы квантового компьютера? Когда он будет создан, он будет настолько совершенен, что отменит обычные компьютеры? Это новая ступень развития человечества?Валерий Рязанов: То, что это будет новая ступень, несомненно, но он ничего не отменяет. Во-первых, он решает определенный класс задач, во-вторых, это очень дорого, это не персональный компьютер. Поэтому, естественно, простые задачи будут решаться на обычных компьютерах, а те задачи, которые для них непосильны, – на этих больших дорогих машинах.Сергей Медведев: Мы вспоминаем первый обычный компьютер, который создавали в 40-х: он был размером со спортзал. В Филадельфии во всем городе гас свет, когда включали один компьютер. Прошло каких-то 20 лет, и он попал в каждый дом.Валерий Рязанов: Проблема квантовых симуляторов в настоящее время в том, что их невозможно проверить. То, что наделала и продает упомянутая канадская фирма, ученые покупают, но относятся к этому, как к некому черному ящику. В каком-то смысле мы здесь вернулись к тому веку, когда начиналась термодинамика – наука об огромном количестве газовых и так далее молекул: законы для этих систем с огромным количеством степеней свободы не могли быть описаны существующей тогда механикой, эти принципиально новые законы находили эмпирически…Сергей Медведев: Верифицируемы ли результаты, полученные при помощи квантового компьютера или квантового симулятора?Валерий Рязанов: Раз обычные машины не могут сосчитать ответ для таких больших квантовых аналоговых систем, то нет. К ним относятся пока, действительно, как к черному ящику, пытаются что-то с их помощью делать, но это надо проверять экспериментально или как-то еще. В движении по магистральному пути создания универсального квантового компьютера, по крайней мере, есть наблюдаемый переход. Уже сделана система из девяти полностью управляемых кубитов, в ближайшие год-два планируется реализация квантового процессора из 50 кубитов, но важно, что здесь все кубиты управляемы, в отличие от аналогового квантового симулятора, где система из многих кубитов как-то «взбалтывается», а потом куда-то релаксирует. Фиксируются ответы, хотя нет уверенности, что это работает так, как предполагается, потому что проверить это невозможно.При реализации универсального (алгоритмического) компьютера движение пока поступательное: на 9 кубитах, правда, можно решить не так много интересных задач, а, скажем, на 15 уже можно будет решать какие-то важные задачи, и они еще будут поддаваться проверке на обычных компьютерах.Сергей Медведев: Кубиты, как я понимаю, должны будут еще совмещаться друг с другом и жить какое-то время.Валерий Рязанов: Первая задача – каждый из кубитов должен жить долго.Сергей Медведев: Долго – это сколько в вашей логике?Валерий Рязанов: Дело в том, что надо успеть совершить операцию, но гораздо больше времени уходит на то, чтобы сделать коррекцию ошибок. Поэтому граница – где-то около ста микросекунд. Сверхпроводящими кубитами, которыми мы занимаемся, легко управлять, они легко связываются друг с другом. Но именно потому, что они легко взаимодействуют, они еще и восприимчивы ко всяким внешним шумам. В первых экспериментах время жизни составляло всего десятки наносекунд, а сейчас это уже десятки микросекунд и выше.Сергей Медведев: И за это время, что они живут, вы успеваете сделать какое-то вычисление с этими девятью кубитами.Валерий Рязанов: Вычисление и коррекцию ошибок. Но, к сожалению, еще не мы. Есть такой Джон Мартинес, человек исходно из Санта-Барбары, но сейчас Гугл «закупил» его вместе с его командой, так что теперь он работает на Гугл, который является основным инвестором его проектов, и вот они уже работают с 9 кубитами.Сергей Медведев: Они заменят обычные компьютеры в своих предельных задачах, в предельных вычислениях? То есть это будущее, через пять-десять лет квантовые компьютеры будут использоваться?Валерий Рязанов: Три года назад я бы сказал, что через 30, а сегодня… Есть прогноз, что через пару лет лидирующие группы будут решать задачи, которые уже невозможно решать с помощью обычного компьютера.Сергей Медведев: Философский вопрос: вообще жизнь, природа, материя развивается по законам квантовой механики? Квантовая механика более адекватна, чем классическая?Валерий Рязанов: Конечно, на уровне атомов и так далее она квантовая.Сергей Медведев: Философски говоря, квантовый компьютер неизбежен? Обычный компьютер ограничивает когнитивные способности человека, он в результате рано или поздно исчерпает свои возможности, с обычным компьютером мы уткнемся в стену, каким бы мощным он ни был?Валерий Рязанов: Мы же, изучая природу, все время лезем вглубь, используем все более глубинные свойства. В этом смысле нам их и нужно понимать, они и более сложные, и имеют квантовую природу. Но когда число атомов и молекул вместе нарастает, от настоящей квантовой методики мы переходим сначала к квазиклассической квантовой механике, где, например, уже не работает соотношение неопределенности. В настоящей квантовой механике, например, нельзя с одинаковой точностью померить координату и импульс. Если число частиц значительно увеличивается, вы уже имеете дело с системами, где с большой точностью определено и то, и другое. На следующем этапе вы переходите к классической механике. Естественно, у Ньютона поначалу не было никаких представлений об атоме, поэтому он изобретал свои законы и не думал об этом. Ни ему, ни человечеству тогда не нужно было туда лезть.Сергей Медведев: Квантовые компьютеры и квантовые вычисления нужны нам по мере продвижения вглубь материи? Чем к более мелким частицам мы придвигаемся, тем необходимее нам квантовый компьютер?Валерий Рязанов: Это с одной стороны. Но и в ряде задач с большими объемами данных он также полезен. Вы правильно упомянули прогнозирование климата, например. Но там, возникают другие сложности, где квантовый компьютер, может быть, и не поможет. Сейчас используют самые большие машины, прогнозируют климат, и очень легко проверить, правильно ли работает программа. Запустил ее назад в прошлое и смотришь: в таком-то году ты получил нужный ответ или нет? Там большую роль играет огромное количество случайных факторов.Сергей Медведев: А человеческое сознание, интеллект устроен по классическому компьютерному принципу, по классическому или по квантовому вычислению?Валерий Рязанов: Думаю, здесь многое еще предстоит познать. Самое страшное оскорбление для физика-ученого было – «ты занимаешься зоологией», то есть не изучаешь процессы, не стараешься их описать, а просто набираешь факты и складываешь, сортируешь их в таблицы.Сергей Медведев: Боже, какой комплекс превосходства физиков! Я, несчастный гуманитарий, историк, социолог, вообще должен раствориться в кресле…Валерий Рязанов: Биология в этом смысле сейчас потихонечку переходит от зоологии в настоящие науки, используя, в частности, и физические методы. «Завиральная» идея о квантомеханическом сознании выдвигалась уже несколько раз на разном научном уровне. Мне нравится такой образ. У Борхеса есть «Сад расходящихся тропок»… В любой судьбе (я в своей не раз это наблюдал) ты подходишь к какой-то точке – «точке ветвления» и долго ломаешь голову, пойти направо или налево. Идешь направо, но частично все-таки остаешься на другой ветви…Сергей Медведев: А что было бы, если бы ты пошел налево?Валерий Рязанов: Просто иногда ты с какой-то вероятностью переключаешься с ветви на ветвь, что-то делаешь и возвращаешься. Потом про эту другую ветвь как-то забываешь, когда эти два пути далеко расходятся, но некоторое время ты живешь «размазанно», у тебя есть суперпозиция твоей жизни между двумя состояниями.Сергей Медведев: А суперпозиция – это ситуация одновременного выбора нескольких тропок?Валерий Рязанов: Одновременное нахождение на нескольких тропках.Сергей Медведев: Постройка квантового компьютера позволит нам ближе подойти к искусственному интеллекту, о котором сейчас главный разговор? Нейросети…Валерий Рязанов: Каждый нащупывает свои принципы работы интеллекта. Важная вещь тут – ассоциативная память, то есть вспоминание образа. В каком-то смысле это тоже взбалтывание и осаждение в ямки: если у вас есть какой-то определенный рисунок ямок в памяти, то вы скатитесь к нему, то есть вспомните, на что похож новый образ. Или у вас есть несколько рисунков: ямки поглубже, ямки помельче, и, если прищуриться, то вы из одних ямок сделаете один рисунок, а из других – другой. А когда вы все это взболтаете, вы попадаете либо туда, либо сюда. Даже не взболтаете, а наложите новый образ; он не совсем точно совпадет, но вы «вспомните» то или другое, в зависимости от того, скатитесь вы сюда или туда, поскольку он более напоминает то или это.Сергей Медведев: Получается, что это такие квантовые состояния сознания.Валерий Рязанов: И вполне классические могут быть. Но в квантовом случае переход, выбор между этими образами гораздо быстрее… У нас же есть куча вещей, которые нас самих удивляют: почему мы это вспомнили, что такое интуиция? Есть хорошее определение – помесь опыта и нахальства.Сергей Медведев: Интуиция – это некие такие срезки сознания, когда мы получаем вывод не путем логических вычислений.Как я понимаю, действительно где-то недалеко лежит квантовая механика, квантовые вычисления, квантовый компьютер.источник: gdb.rferl.orgСергей МедведевВедущий программ «Археология» и «Футурошок», историк и политолог. Автор книг и статей по теории политики и проблемам современной России, ведущий телеканала «Дождь», колумнист русского «Форбс». Сотрудничает с РС с 2015 года

Также по теме:
Вне компьютерной темы.