Математики из Австралии и Франции создали высокоэффективный алгоритм, позволяющий быстро умножать числа, слишком большие для обычных способов. Ученые искали этот метод в течение почти 50 лет с тех пор, как в 1971 году был предложен алгоритм Шенхаге-Штрассена. Об этом пишет издание Science Alert.Новый алгоритм выполняется за время, равное O(n log n), где n является порядком числа. Он может выполнять операцию умножения с числами, состоящими из более чем миллиарда знаков, в течение менее 30 секунд.Обычные методы выполняют это действие за время, равное n в степени 1,58-2, и у компьютеров вычисление результата с большими множителями может занять месяцы. Это происходит потому, что, например, умножение двух трехзначных чисел требует девяти операций (каждая цифра одного числа перемножается с тремя другими), а двух четырехзначных чисел - уже 16 операций.Высокоэффективный алгоритм полезен для вычисления произведений только очень больших чисел, например, 10 в степени 214857091104455251940635045059417341952. Теоретически он по скорости превосходит оригинальный метод Шенхаге-Штрассена, в основе которого лежит быстрое преобразование Фурье. Однако ученые опасаются, что в доказательстве их метода могли быть допущены ошибки, поэтому необходимы дальнейшие проверки для подтверждения его работоспособности.
https://stfw.ru
Решена полувековая математическая загадка. Новый высокоэффективный алгоритм позволяет выполнять операцию умножения с числами, состоящими из более чем миллиарда знаков, в течение менее 30 секунд
Математики из Австралии и Франции создали высокоэффективный алгоритм, позволяющий быстро умножать числа, слишком большие для обычных способов. Ученые искали этот метод в течение почтиТакже по теме: